High-performance and high durable polymer electrolyte materials for PEFC application

Masamichi Nishihara,

International Research Center for Hydrogen Energy Kyushu University ^{CV} Japan

nishihara.masamichi.064@m.kyushu-u.ac.jp

1. Decarbonization of transportation sector and contribution of fuel cell (PEFC) system

2. Polymer electrolyte Membrane (PEM)

• High gas barrier PEM for high durability

3. Ionomer

• High gas permeable ionomer for high performance

Current Energy Situation (Japanese case)

Decarbonization of transportation sector

Note: Other = agriculture, fuel production, transformation and related process emissions, and direct air capture.

IEA, Net Zero by 2050 , p100

Figure 3.24 > Heavy trucks distribution by daily driving distance, 2050

Driving distance is the key factor affecting powertrain choice for trucks

IEA, Net Zero by 2050, p135

Figure 3.23 Solution Global share of battery electric, plug-in hybrid and fuel cell electric vehicles in total sales by vehicle type in the NZE

IEA. All rights reserved.

Sales of battery electric, plug-in hybrid and fuel cell electric vehicles soar globally IEA, Net Zero by 2050, p134

Electrification of transportation sector is important for decarbonization.

Current research target of FCVs

Passenger car

Lifetime: 5,000hs

©Toyota

Heavy duty vehicles (HDVs)

Lifetime: 50,000 hs + high power generation (target in 2030 for 25t truck)

It is hard to realize the targets by using current technology and its modification.

Potential demand of FC application for HDVs

Target of H2 usage in Japan (2050): 20Mt/year (Current: 2Mt/year) For HDV application: ca 6Mt/year

Global market of HDVs (2050): Max 1.5M cars (ca 300 T¥ (2T\$))

Fuel cell application for HDVs

- Contribution to decarbonization of transportation sector
- Driving force to glow automotive industry

Current research target of FCVs Development of new materials, system and concept for HDV application

NEDO, Roadmap of fuel cell development -FCV•HDV application- (2023 Feb.)

Polymer electrolyte fuel cell (PEFC)

Hydrogen + Oxygen → Water + Electricity Hydrogen Oxidation Reaction (HOR): $2H_2 \rightarrow 4H^+ + 4e^-$ Oxygen Reduction Reaction (ORR): $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

https://newagemetals.com/pgm-based-fuel-cells-applications-for-industry/

Catalyst Coating Membrane (CCM) Membrane Electrode Assembly (MEA) Membrane Electrode GDL Assembly (MEGA)

https://www.openpr.com/news/2192967/global-membrane-electrode-assembly-market-analysis

1. Decarbonization of transportation sector and contribution of fuel cell (PEFC) system

- 2. Polymer electrolyte Membrane (PEM)
- High gas barrier PEM for high durability

3. lonomer

• High gas permeable ionomer for high performance

PEM

Ionomer Technical problems of polymer electrolyte materials

Hydorocarbon polymer electrolytes

- © Relatively cheap
- ③ Much structural variations

Current design of polymer electrolytes

- 1. High durable polymer Polyphenylene etc.
- 2. Radical scavengers

PEM

lonomer

Alternative polymer electrolyte materials

1. High durable polymer Polyphenylene, crosslink etc.

M. Breitwieser, et. al., *Sustainable Energy Fuels*, 2021, 5, 3687–3699.

G
 G
 Higher durability than Nafion
 S
 G
 Limited chemical structures

View Article Online

Higher ability of radical neutralization
 Limited numbers of the materials

Needs new concept to develop better materials than now

PEM lonomer

New Material designs for Polymer Electrolytes

PEM

For High Durability – Durable Membranes with High Gas Barrier-

Chemical degradation mechanism of PEMs

Radical species

•OH (hydroxy radical), •OOH (perhydroxy radical), •H (hydrogen radical or atom)

- I. Radical formation at anode by the penetrated oxygen through PEMs
- II. Radical formation on the deposited Pt in PEMs by the penetrated oxygen through PEMs
- III. Two electron reaction at cathode

"Oxygen penetration through PEMs" is a main cause of radical formation.

Inaba et al, Electrochimica Acta 51 (2006) 5746–5753 Ohma et al, ECS (2007) 154 (8) B757-B760

Degradation of PEMs and Concept of This Work

Generation mechanism of radicals

- I. Radical formation at anode by the penetrated oxygen through PEMs
- II. Radical formation on the deposited Pt in PEMs by the penetrated oxygen through PEMs
- III. Two electron reaction at cathode

"Oxygen penetration through PEMs" is a main cause of radical formation.

Hypothesis Can we suppress PEM degradation by high oxygen **barrier** PEMs? Purpose Development of high gas barrier PEMs to confirm this hypothesis. Material design (our research) "Reduce radicals" ·OH O_2 Gas barrier H_2O_2

PEM

Schematic Image and Preparation of Gas Barrier PEM

Gas barrier PEM

Preparation of Gas barrier PEM

PEM

Structure and Gas Permeability of Gas Barrier PEMs

0.5 mg/cm² \rightarrow 2.2 μ m

Sample	Molar ratio	Areal density	Thickness
04.0.5	(FVA.FVO)	(mg/cm/)	(µm)
51-0.5	1:1		
S10-0.5	10:1		
S20-0.5	20:1	0.5	2.2
S60-0.5	60:1		
S100-0.5	100:1		
S100-0.1	100:1	0.1	0.5
S100-0.3	100:1	0.3	1.1

Oxygen permeability (80 °C, dry)

High concentration of PVA shows higher O₂ barrier property.

Proton Conductivity and Fuel Cell Performance

To clarify the hypothesis, high gas barrier PEMs, S100-0.5, was selected for OCV holding test even though IV performance was low.

16

Chemical Durability (OCV Holding Test)

OCV holding test

S100-0.5 (PVA:PVS=100:1 (mol), 2.2µm)

(1cm², 0A/cm², 90°C, 30% RH, H₂: 139 mL/min Air: 332 mL/min)

O2 barrier clearly affects chemical durability of PEM.

 \rightarrow The first example of vinyl hydrocarbon polymer to overcome chemical durability than Nafion.

Hydrogen crossover current density

(80°C, 95% RH, H₂: 70 mL/min, N₂: 166 mL/min)

Nafion: Gradually ${\rm H}_{\rm 2}$ crossover increased by membrane thinning.

Gas barrier PEM: High gas barrier maintained before a gas barrier interlayer did not have any damages.

SEM Images after OCV Holding Test

Summary of Gas Barrier PEM (50µm Thickness)

Hypothesis

Can we suppress PEM degradation by high oxygen barrier PEMs?

<u>Answer</u>

Gas barrier PEM showed high chemical durability.

- → Radical formation for O2 permeation is suppressed, and the membrane thinning is also suppressed.
- → The first example of vinyl hydrocarbon polymer to overcome chemical durability than Nafion.

Current problems

- Low IV performance
- Confirmation of mechanical and thermal durability

🗱 : Membrane degradation by radicals

Z. Gautama, et. al., *J. Memb. Sci.*, 658, 120734 (2022). Patent 2021-132396

Preparation of Thin Gas Barrier PEM

Problem: low IV performance

(80°C, 95% RH, H₂:139 mL/ min, air: 332 mL/min)

To improve IV performance, thinning PEM causing reduction of membrane resistance was carried out.

Preparation of thin Gas Barrier PEM

Thin gas barrier PEM : $18 \mu m$ (Nafion (9 μ m) x 2 + interlayer 0.2-0.3 μ m)

Z. Gautama, in preparation.

Fuel Cell Performance of Thin Gas Barrier PEMs

xx-PVA-yy

xx: Nafion thickness (μm) yy: Gas barrier loading (mg/cm²)

	Max power density	PEM resistanc	e
	W/cm ²	mΩ cm ²	
50-Nafion	0.41	91	
50-PVA-0.05	0.3	180	
50-PVA-0.5	0.19	288 2	times hiaher
20-Nafion	0.47	78 🥅	2
20-PVA-0.05	0.32	148 🚝	2
20-PVA-0.5	0.23	274	

• Reduction of gas barrier loading significantly improves fuel cell performance.

• Utilizing \sim 0.2 μ m gas barrier layer still shows about 2 times higher PEM resistance than Nafion.

Chemical Durability of Thin Gas Barrier PEM

Even with 0.2 µm gas barrier layer, the chemical durability of Gas barrier PEM was improved significantly.

80

100

The hydrogen crossover trend shows that the gas barrier ٠ layer could maintain lower hydrogen crossover.

SEM Images of End-of-life (EOL) Membranes

- Gas barrier PEM had more homogenous thickness at EOL.
- At EOL, Nafion had more severe membrane thinning.
- Membrane thinning occurred mainly at anode.

Summary – Gas barrier PEM-

Gas barrier PEM

- Gas barrier gives high chemical durability due to effective suppression of radical formation by O₂ barrier.
- Thin gas barrier PEM shows better IV performance with chemical durability.

Useful characteristics

- High gas barrier materials would be candidates for gas barrier layer.
- Easy and simple PEM preparation process.

Future works

- Improvement of IV performance more.
- Evaluation of the real durability in fuel cell devises.

1. Decarbonization of transportation sector and contribution of fuel cell (PEFC) system

2. Polymer electrolyte Membrane (PEM)

• High gas barrier PEM for high durability

3. Ionomer

• High gas permeable ionomer for high performance

Gas permeable ionomers -reported works-

M. A. Modestino et.al, JACS. 2020, 142, 3742-3752.

How about hydrocarbon polymers?

Ionomer at Cathode Catalyst Layer

Research objective: reducing oxygen transport resistance in cathode layer by a simple but effective way.

Gas permeable ionomer blend

Proton conductive $\begin{pmatrix} CF_2 \\ CF_2 \end{pmatrix}_n \begin{pmatrix} CF_2 \\ CF_2 \\ F_3 \\ CF_2 \\ F_3 \\ CF_2 \\ F_3 \\ CF_2 \\ F_3 \\ CF_2 \\ SO_3 H \end{pmatrix}$ Nafion 10 Barrer (80°C)

Tsuchihara, et al., Macromolecules., 25: 5916 (1992)

Synthetic Route $-Si \longrightarrow \frac{TaCl_5/Bu_4Sn}{Toluene, N_2, 80^{\circ}C, 24h}$ Tsuchihara, et al., *Macromolecules*, 25, 5916-5820, (1992)

Ionomer content in MEA \rightarrow 28wt. %

Sample Name	Nafion (wt. %)	PTMSDPA (wt. %)
Nafion	100	0
ACE 1.25%	98.75	1.25
ACE 2.50%	97.5	2.5
ACE 3.75%	96.25	3.75
ACE 5.0%	95.0	5.0

Okumura et al., *J. Electrochem. Soc.*, **164**(9): F928-F934 (2017)

Structural analysis of blend ionomer

Katzenberg et al., *J. Am. Chem. S* **142**(8): 3742-3752 (2020) 29

Structural analysis of blend ionomer

Fuel cell performance

Components	Notes
PEM	Nafion 212
Cell Area (JARI)	1 cm ²
Pt content	0.3 mg/cm ²
GDL	EC-TP1-060T

Components	Conditions
Temperature	80°C
Relative Humidity	95% RH
Hydrogen Flow	0.139 L/min
Air Flow	0.332 L/min

Ionomer content in MEA \rightarrow 28wt.%

Okumura et al., *J. Electrochem. Soc.*, **164**(9): F928-F934 (2017)

Polarization Curve

Limit Current Density

At the higher current density region, the blend ionomers outrun Nafion ionomer performance.

Low performance at low current density

Fuel cell performance

Concentration Overvoltage

Concentration overvoltage: Similar behavior with limit current density

Surface Wettability

*Wet Sample

<u>ACE 2.5%</u>

Wettability of PTMSDPA is higher than that of Nafion \rightarrow Hinderance of water emission

Fuel cell performance

Polarization Curve

NA 2.5%: Nafion 28wt% + PTMSDPA 0.7wt% (Nafion : PTMSDPA = 97.5 % : 2.5%) Nafion: Nafion 28 wt%

Concentration Overvoltage

Fuel Utilization of 2% at current density of 0.4 A/cm²

If Nafion amount is the same, performance at low current density is similar with Nafion.

Oxygen transport resistance in catalyst layer

$R_{Total} = R_{GDL} + R_{CL}$

R_{total} : Total O₂ transport resistance (s/m)

 \mathbf{R}_{GDL} : O₂ transport resistance through GDL (s/m)

 \mathbf{R}_{CL} : O₂ transport resistance through catalyst layer (s/m)

 $R_{CL} = R_{pore} + R_{Pt}$

R_{pore} : OTR through catalyst pore

R_{Pt} : OTR around Pt catalyst (ionomer related)

$$R_{Total} = R_{GDL} + (R_{pore} + R_{Pt})$$

Oxygen transport resistance in catalyst layer

Oxygen transport resistance in catalyst layer

Total O₂ transport resistance : R_{total} [s/m]

Measurement condition

Components	Measurement Condition
Temp. / Relative Humidity	80°C / 95% RH
Anode Gas	H ₂
Cathode Gas / Dilute Gas	O2 (dry) / N2
O ₂ Gas Concentration	1, 2, 3, 4 and 5 %
Gas Flow	0.8 L/min
Cell Voltage	0.2 V
Total Pressure	100, 150, 250, 250 kPa

Mashio et al., *ECS Trans.*,**11**(1): 529 (2007) Yasuda et al., *ECS Trans.*,**61**(23): 39 (2014) Sakai et al., *ECS Trans.*,**25**: 1193 (2009)

$$i_{lim} = \frac{1}{R_{total}} P_{O2} \frac{nF}{RT}$$

Limit current density vs O2 partial pressure

Oxygen transport resistance in catalyst layer

 O_2 transport resistance through catalyst layer (s/m): R_{CL}

R_{Total} = aP + R_{CL}

Blend ionomer shows lower R_{CL} than Nafion \rightarrow Effect of gas permeable polymer

Oxygen transport resistance of ionomer

R_{Pt} : OTR around Pt catalyst (ionomer related)

 $R_{CL} = R_{pore} + R_{Pt}$

R_{pore} : OTR through catalyst pore
 R_{Pt} : OTR around Pt catalyst (ionomer related)

$$R_{CL} \times Lo = \frac{R_{Pore}^* \ Lo^2}{3} + R_{Pt}^*$$

Lo: Pt loading

Yasuda et al., ECS Trans., 61(23): 39 (2014)

$$R_{CL} = R_{Pt} + R_{pore}$$

= $R_{Pt}^* / L_0 + R_{Pore}^* \times L_0 / 3$

 R_{CL} is measured by changing Pt loading. P_{Pt} is calculated from the equation above.

Oxygen transport resistance of ionomer

R_{CL} with different Pt loading

• R_{CL}s of gas permeable ionomer with all different Pt loading are lower than that of Nafion.

• R_{CL}s of gas permeable ionomer with 0.1 mgPt/cm² is lower than that of Nafion with 0.3 mgPt/cm².

Effective power generation by high gas permeable ionomer with lower Pt loading.

→ Contribution of reduction of Pt loading

Oxygen transport resistance of ionomer

 $R_{CL} = R_{Pt} + R_{pore}$ = $R_{Pt}^* / L_0 + R_{Pore}^* \times L_0 / 3$

 R^*_{Pore} can be obtained from slope and R^*_{Pt} from the intercept of linear fitting.

$$R_{CL} \times Lo = \frac{R_{Pore}^* \ Lo^2}{3} + R_{Pt}^*$$

Lo: Pt loading

Yasuda et al., ECS Trans., 61(23): 39 (2014)

lonomer	R^*_{Pt} (s/(m•(mgPt/cm2)))	R [*] (s•(mgPt/cm2)/m)
Nafion	0.93	24.9
ACE 2.5%	0.53	17.7
ACE 5.0%	0.51	23.5

- R_{Pt}^* of 2.5% gas permeable ionomer is 43% lower than that of Nafion ionomer.
- R_{Pore}^* of 5.0% gas permeable ionomer is higher than that of 2.5% gas permeable ionomer. \rightarrow Hinderance of O2 transport by generated water
- R_{Pore}^* of Nafion is higher than that of 2.5% gas permeable ionomer.
- \rightarrow Structural change by gas permeable polymer

Ionomer structure in catalyst layer

[Expected ionomer structure in catalyst layer] Estimated by MD calculation and OTR

 Highly condensed layer at Pt catalyst/ionomer interface (< 0.5nm) Ave. thickness of ionomer: < 10 nm

(1) Oxygen transport resistance at Pt catalyst/ionomer interface

- Major resistance of R_{Pt}
- Three-seven times higher OTR than bulk OTR
- Dense Nafion layer is formed by Adsorption of sulfonic acid to Pt.
- Affect crystalline structure of Pt catalyst/ionomer

(2) Oxygen transport resistance of bulk ionomer

- No difference from PEM
- (3) Interfacial resistance of ionomer/gas phase
 - Less contribution than (1)

[Further improvement of performance]

- Introduction of hydrophobicity
- Introduction of higher gas permeability
- Less structural relaxation by time

Summary – Gas permeable ionomer-

Gas Permeable ionomer blend PEM

- Gas permeability gives high fuel cell performance due to low oxygen transport resistance.
- 2.5% PTMSDPA shows highest limit current density.

Useful characteristics

- Works well by mixing gas permeable polymer only a few %
- Easy and simple preparation process.

Future works

- Introduction of hydrophobicity
- Introduction of higher gas permeability
- Less structural relaxation by time

Y. Hutapea, et. al., *J. Power Sources*, 556, 232500 (2023). JP2021-132396

Acknowledgement

KYUSHU UNIVERSITY

Prof. K. Sasaki Prof. A. Hayashi Prof. S. Lyth Prof. J. Matsuda

Ass. Prof. Tachikawa Ass. Prof. Sugiyama

Prof. Fujikawa

Dr. Y. A. Hutapea Mr. Z. A. R. Gautama Mr. Y I Mr. E. Ikhbayar

