

Comprehensive Assessment for Underground Hydrogen Storage in Oman

Nasser AL Rizeiqi

Department of Renewable Energy and Hydrogen

Ministry Of Energy and Minerals

Email: <u>Nasser.m.alrizeiqi@mem.gov.om</u>

Outline

- •Research Objective
- •Technical background on underground hydrogen storage (UHS)
- Methodology
- •Discussion
- •Result
- •References

Research Objective

- Identify geological deposit in Oman that can be used for hydrogen storage
- Analyze and screening salt deposits for hydrogen storage suitability
- Propose salt cavern design for salt leaching

Technical background on underground hydrogen storage

Depleted Oil /Gas Reservoir

- Geological conditions are well known
- Surface facility and subsurface data are available
- More technical development for hydrogen adaptability
- No prior experience for hydrogen storage

Deep Aquifer

- •Optimal depth at ~ 2000m
- •Characterized with high porosity and permeability
- •Main two parameters : Good sealing and good reservoir conditions
- •No prior experience for hydrogen storage

Salt Cavern

- •An artificial chamber created for storing purpose
- •Salt low permeability, self-healing properties and resistivity for chemical reactions with the stored gas
- •This type of storage has been done before in UK and USA for hydrogen storage

	Clemens (USA)	Moss Bluff (USA)	Teesside (UK)
Geology	Domal salt	Domal salt	Bedded salt
Operator	Conoco Phillips	Praxair	Sabic Petroleum
Stored fluid	Hydrogen	Hydrogen	Hydrogen
Commissioned [year]	1983	2007	~1972
Volume [m ³]	580,000	566,000	$3 \times 70,000$
Reference depth [m]	930	> 822	350
Pressure range [bar]	70-135	55-152	~45
Possible working gas capacity H ₂ Mio [kg]	2,56	3,72	0,83

Summary

Technical specification	Deep aquifers	Depleted Oil/Gas	Salt caverns
Abundance	Appears mostly in sedimentary basins	Hydrocarbon accumulations zones	Salt basins in Oman
Estimated capacity	Very high	Very high to high	High. It can increase if more than one cavern were built
Experience	No prior experience	No prior experience	Good experience in USA and UK
Injection and production intervals	One, maximum two cycle per year	One, maximum two cycle per year	Up to 10 cycles per year
Bore holes per cavern	Few boreholes	Few boreholes	One bore hole
Storage use	Seasonal storage	Seasonal storage	Possible use for more than seasonal
Research fields	Leakage, reacting with the surrounding environment,	Reservoir pressure, biological and chemical reactions	Cavern convergence, periodic monitoring for salt shaping

Methodology

- Salt dome depth needs to be more than 1 km (for Safety purpose and proper designing)
- Surface piercing salt dome are the best since they are easier to site
- Larger size/area of salt dome helps to build more than one cavern

Oman's Geology

Discussion

- Two salt domes shows good potential for underground storage
- Qarn Alam and Qarn Shamah
- The size of the other domes is relatively small

Salt Dome	Size (Surface Area)	Depth (Centroid)
Qarn Alam	1 x 6 km	10 km
Qarat Al Milh	0.5 X0.4 km	2.5 km
Qarn Shamah	2.8 X 2.5 km	3 km
Qarat Al Kibrit	0.7 X 0.5 km	15 km
Qarn Majayiz	3 X 1.4 km	Unknown
Qarn Nihidya	2.8 X 1.6 km	3 km

Salt Cavern Shaping

- Salt caverns are created in five phases
- 1. Initial phase
- 2. Leaching phase
- 3. Debrining phase
- 4. First filling phase
- 5. Cyclic loading phase

Results

- Single salt cavern can store up to 0.1 TWh of energy
- Estimated working gas of 40.8×10^6 Kg of hydrogen
- Many factors are controlling the shape and dimensions of the cavern

- Hydrogen stored quantity will depend to large extent on the project aims on which energy system it will be used for .i.e. consumption, conversion, export.
- Detailed risk assessment and economic analysis for underground hydrogen storage.
- More advanced geotechnical study by modelling thermodynamic and mechanical properties of the salt dome.

References

Journal of Advanced Research in Applied Sciences and Engineering Technology 27, Issue 1 (2022) 9-31

Potential of Underground Hydrogen Storage in Oman

Nasser Mohammed Al Rizeiqi¹, Nasser Al Rizeiqi^{1,*}, Ali Nabavi²

¹ Department of Hydrogen, Ministry of Energy and Minerals, Sultanate of Oman

² Energy Systems Centre for Climate and Environmental Protection, Cranfield University, United Kingdom

A publication of

Copyright © 2022, AIDIC Servizi S.r.l. ISBN 978-88-95608-96-9; ISSN 2283-9216

Multi-Criteria Evaluation of Large-Scale Hydrogen Storage Technologies in Oman using the Analytic Hierarchy Process

Nasser Al Rizeiqi^a, Amirah Azzouz^b, Peng Yen Liew^{a,*}

³Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia ³Faculty of Engineering and Technology, Muscat University, Muscat, Oman pyliew@utm.my

References

- Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. In *International Journal of Hydrogen Energy* (Vol. 44, Issue 29, pp. 15072–15086). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2019.04.068
- HyUnder, E. S. (2014). "Assessment of the Potential, the Actors and Relevant Business Cases for Large Scale and Long Term Storage of Renewable Electricity by Hydrogen Underground Storage in Europe."
- Ozarslan, A. (2012). Large-scale hydrogen energy storage in salt caverns. *HE*, 37(19), 14265–14277. https://doi.org/10.1016/j.ijhydene.2012.07.111
- Tarkowski, Radoslaw. (2019). Underground hydrogen storage : Characteristics and prospects. 105(February 2017), 86–94. https://doi.org/10.1016/j.rser.2019.01.051
- Tarkowski, Radosław, & Czapowski, G. (2018). ScienceDirect Salt domes in Poland e Potential sites for hydrogen storage in caverns. *International Journal of Hydrogen Energy*, 43(46), 21414– 21427. https://doi.org/10.1016/j.ijhydene.2018.09.212

UNDER THE PATRONAGE OF

BROUGHT TO YOU BY

STRATEGIC PARTNER

THE FUTURE OF ENERGY

GREEN HYDROGEN - FROM VISION TO ACTION

FREUDE AM FAHREN

Ultimate driving tour Dubai to Muscat

ENERGY EXECUTIVE CIRCLE

World energy leaders unite after COP28

TECH2 TALKS

Talking innovation at the green stage

H2 MOBILITY SHOWCASE

Powering planes, ships, trucks & cars

WOMEN IN FUTURE ENERGIES

Powering progress and a resilient future

FUTURE ENERGY LEADERS

Students share their solutions in support of H2

Dec 12-15, 2023 Oman Convention & Exhibition Center Muscat, Sultanate of Oman

Brought to you by

GREEN HYDROGEN SUMMIT OMAN

Discovering underground H₂ storage

Spotlighting Engineering, Science and Technology

In collaboration with

